Abstract

Phishing is one of the simplest ways in cybercrime to hack the reliable data of users such as passwords, account identifiers, bank details, etc. In general, these kinds of cyberattacks are made at users through phone calls, emails, or instant messages. The anti-phishing techniques, currently under use, are mainly based on source code features that need to scrape the webpage content. In third party services, these techniques check the classification procedure of phishing Uniform Resource Locators (URLs). Even though Machine Learning (ML) techniques have been lately utilized in the identification of phishing, they still need to undergo feature engineering since the techniques are not well-versed in identifying phishing offenses. The tremendous growth and evolution of Deep Learning (DL) techniques paved the way for increasing the accuracy of classification process. In this background, the current research article presents a Hunger Search Optimization with Hybrid Deep Learning enabled Phishing Detection and Classification (HSOHDL-PDC) model. The presented HSOHDL-PDC model focuses on effective recognition and classification of phishing based on website URLs. In addition, SOHDL-PDC model uses character-level embedding instead of word-level embedding since the URLs generally utilize words with no importance. Moreover, a hybrid Convolutional Neural Network-Long Short Term Memory (HCNN-LSTM) technique is also applied for identification and classification of phishing. The hyperparameters involved in HCNN-LSTM model are optimized with the help of HSO algorithm which in turn produced improved outcomes. The performance of the proposed HSOHDL-PDC model was validated using different datasets and the outcomes confirmed the supremacy of the proposed model over other recent approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.