Abstract

Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify ‘bona fide’ relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi–rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes.

Highlights

  • Due to their ability to establish dormant forms in the liver called hypnozoites, relapsing malaria parasites pose a significant obstacle to malaria elimination [1]

  • Relapses remain poorly understood because it is difficult to verify whether P. vivax bloodstage infections in patients are due to new infections or relapses in most cases

  • We found that relapses were clinically silent compared to initial infections, and they were associated with a robust memory B cell response

Read more

Summary

Introduction

Due to their ability to establish dormant forms in the liver called hypnozoites, relapsing malaria parasites pose a significant obstacle to malaria elimination [1]. Human studies in endemic areas have limited utility because it is generally difficult to determine whether a blood-stage infection resulted from new, relapsing, or recrudescent infections [4, 5]. Approaches such as parasite genotyping, relocation of individuals from P. vivax endemic areas to non-endemic areas, and mass drug administration provide more confidence that a P. vivax infection is due to a relapse, these approaches have caveats [6,7,8,9,10]. The inability to control for an individual’s infection history complicates the investigation of immune responses during human relapse infections

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.