Abstract

Light weight lead free, polymer, and carbon nanotubes based flexible piezoelectric nanogenerators have prompted widespread concern for harvesting mechanical energy and powering next generation electronics devices. Herein, lightweight polyvinylidene fluoride (PVDF)-carbon nanotube (CNT) foam was prepared to fabricate humid resistant hydrophobic flexible piezoelectric nanogenerator to converts mechanical energy into electricity for the first time. Hydrophobic piezoelectric PVDF-CNT foam with density of 0.15 g/cm3 was prepared by solution route. PVDF-CNT foam exhibited crystalline and a well-defined chain likes structure with 65% fraction of β-phase. Self-poled PVDF-CNT foam shows piezoelectric charge coefficient (d33) of 9.4 pC/N. High d33 of PVDF-CNT foam is caused by dipole alignment induced by local electric field of CNT in the microcellular structure of PVDF. The developed foam exhibits ultrahigh dielectric constant (ε') ∼ 3048 at 150 Hz. Flexible piezoelectric PVDF-CNT foam based nanogenerator was fabricated, which generates high output voltage ∼12 V and current density of 30 nA/cm2 at small compressive pressure of 0.02 kgf. Piezoelectric output performance was measured under different humid condition and an output voltage up to 8 V was achieved even under 60% RH condition. PVDF-CNT foam exhibited hydrophobic behavior and high surface water contact angle of 139°. Such high output voltage even under small pressure, without applying electrical poling and under humid condition was originated though CNT induced self-alignment of electric dipoles in PVDF polymer. These excellent performances of developed foam based device confirmed its potential application in organic based ultrasensitive self-powered nanosensors and nanosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call