Abstract
It is a long-standing issue to develop conductive polymer composites as humidity sensor with rapid response, high reproducibility and good long-term stability. Herein, a simple, efficient, and environmentally benign strategy was proposed to fabricate highly porous, robust and conductive cellulose composite aerogels. Owing to the intrinsic high specific surface area and well-defined electrically conductive network, the as-prepared cellulose composite aerogels were highly sensitive to water vapor with a relative resistance response value of as high as ~ 1000% at a CNT loading of 0.19 vol%. The dense hydrogen bonding network endowed high reproducibility and good long-term stability to cellulose composite aerogels. Moreover, a significant improvement in the mechanical properties of cellulose composite aerogels was achieved, outperforming neat cellulose aerogel with the increments of ~ 149.2% and ~ 242.1% in compressive strength and modulus, respectively. The green, robust, highly sensitive cellulose composite aerogels are in great potential need as humidity sensors in biology and automated industrial processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.