Abstract

Humidity dependency of friction behavior of nano-undulated diamond-like carbon (DLC) films was investigated by a home-made ball-on-disk type tribometer under controlled relative humidity of 0, 50, and 90%. Nano-undulated DLC films with surface roughness ranging from 0.2 to 13.4 nm were prepared by deposition of DLC film on the Si substrate with Ni nanodots. Friction coefficient of the flat DLC surface increased with the relative humidity, while that of the nano-undulated surfaces revealed smaller dependence on the relative humidity. When the surface roughness increased to 13.4 nm, friction behavior was observed to be independent of the relative humidity. The analysis of chemical composition and atomic bond structure of the debris and the transfer layer revealed that the humidity dependence on the nano-undulated surface was minimized by suppressing the graphitization of the transfer layer even with high concentration of Fe in the debris.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.