Abstract

The spectroscopic behavior of rhodamine 6G (R6G) dye intercalated in layered hexaniobate K4Nb6O17 was investigated. R6G cations were intercalated into the niobate through displacement of preintercalated alkylammonium ions. Powder X-ray diffraction and elemental analysis indicated that the dye molecules were densely accommodated in the interlayer spaces of niobate. The spectroscopic behavior of intercalated R6G was characterized by humidity-dependent aggregation at room temperature. The dye molecules were present dominantly as monomers under humid conditions (93% relative humidity (RH)), while they formed dimers under relatively dry conditions (20% RH). The aggregation-deaggregation of dye occurred reversibly depending on the humidity. The reversible aggregation was not accompanied by a large alteration of the interlayer structure of the sample, because only a small amount of water was adsorbed/desorbed with a small change in the basal spacing of the intercalation compound during the humidity change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call