Abstract
A parameter, known as the parameter of humidification vibration deformation, was proposed, describing quantitatively the impact of water content on vibration settlement deformation, and its relationship with humidification water content, dynamic shear stress peak value, initial consolidation stress and vibration frequency was built. The result shows that 1) the parameter of humidification vibration deformation increases with the vibration shear stress peak value increasing. 2) The humidification water content has significant influence on the curve of the parameter of humidification vibration deformation and the peak vibration shear stress. When the humidification water content is low, the curve increases slowly. However, when the humidification water content is high, the curve increases rapidly. 3) Initial consolidation stress has significant influence on the humidification vibration deformation coefficient. When initial consolidation stress is not large enough to destroy the loess structure, with initial consolidation stress increasing, the humidification vibration deformation coefficient decreases. On the contrary, the humidification vibration deformation coefficient increases with initial consolidation stress increasing. 4) With the increase of vibration time, the parameter of humidification vibration settlement shows an increasing trend overall. The initial dynamic shear stress peak value and humidification water content all have significant effects on the curve of the parameter of humidification vibration settlement and vibration time. However, the humidification water content is even more significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.