Abstract

In this work, data for the interactions between humic acid (HA) or fulvic acid (FA) with phosphate ions at the surface of goethite (alpha-FeOOH) are presented. The results show very clear differences between HA and FA in their interactions with phosphate at goethite surface. HA is strongly bound to goethite but surprisingly does not strongly affect the phosphate binding, whereas FA is less strongly bound, but these molecules have a very large effect on the phosphate adsorption, and vice versa. Phosphate adsorption to goethite in the presence of adsorbed HA or FA can be well predicted with the LCD model (ligand and charge distribution). According to the model calculations, the nature of the interactions between HA or FA with phosphate at goethite surface is mainly electrostatic. The stronger effects of FA on phosphate adsorption are caused by its spatial location which is closer to the oxide surface, and as a consequence, the electrostatic interactions between adsorbed FA particles and phosphate ions are much stronger than for HA particles. This is the first time that effects of natural organic matter (NOM) on an anion adsorption are predicted successfully using an integrated ion-binding model for oxides and for humics that accounts for chemical heterogeneity of NOM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.