Abstract
Tunable Resistive Pulse Sensing, TRPS, is an emerging technique used in quantification and measuring the size (particle-by-particle) of viruses, exosomes and engineered colloidal spheres in biological fluids. We study the features of TRPS to enhance size characterization and quantification of submicron-sized microplastics, also called plastic microparticles, MP, in freshwater environments. We report alterations on the detection of the resistive pulses in the TRPS caused by humic acids, HA, during the size measurement of polystyrene microspheres used as MP surrogate. We discuss the alteration of the electric field in the measuring channel of the TRPS apparatus induced by the passage of HA. TRPS is a fast and precise technique for counting and size determination of MP but needs the evaluation of the influence of the organic matter on the current blockades. We show that statistical clustering models of the magnitude distribution of the resistive pulses can help to detect and quantify changes in the pulse size distributions induced by flocculation of humic acids. Conclusions of this study indicate that TRPS can be a valuable tool to improve the knowledge of the MP fate in surface waters, in the vadose zone and groundwater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.