Abstract

Humic substances exposed to solar light play the role of photosensitizers in aquatic photochemical processes, generating free radicals during UV and visible light irradiation. During irradiation, high molecular weight structures are destroyed and low molecular weight constituents are formed. Alterations of the humic acids metal binding capacity due to their photochemical alterations occur. The present work reports controlled laboratory experimental results on the binding of copper by a certified purified peat humic acid (PPHA) before and after irradiation in a laboratory scale photoreactor. A reference curve of copper binding by photochemically unaltered humic acid was experimentally determined as a function of solution pH by potentiometric titrations. The experimental data series correspond to a pH range from 3 to 8.5, necessary for the simultaneous consideration of complexation and metal species solubility contribution in the obtained results. From the experimental results, it was apparent that copper is strongly bound by humic acid even at the acidic range of pH where the percentage of copper bound reached 60 and 95% at pH values of 3.5 and 5.5, respectively. During 12 and 20 days of irradiation experiments, humic acid photoalteration was experimentally monitored by a size exclusion chromatography system (HPLC-SEC). From the potentiometric titrations of the irradiated humic acid solutions by a copper selective electrode, it was apparent that the copper binding capacity of photoaltered humic acid solutions was significantly reduced for pH values up to 6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.