Abstract
<abstract> <p>Seeds of pea (<italic>Pisum sativum</italic> L. var. Alicia) were germinated for 5 d by soaking in distilled water or treated with cadmium and/or humic acid (HA). Interaction between humic acid and cadmium was previously discussed. However, the regulation of the humic acid / cadmium interaction during seed germination, the first crucial stage of the plant life cycle, need to be clarified. Seed germination is an important stage of the plant life, which is highly sensitive to surrounding medium changes, since the germinating seed is the first interface of material exchange between plant cycle and environment. Relationships among cadmium stress, HA-treatment, germination rate, and changes in reserve mobilization were studied. Cadmium disrupted the soaking process that was a major event of germination. Moreover, important solutes leakage due to Cd-treatment caused disorder in reserve mobilization from cotyledons to growing embryonic axes. The observed delay in germination rate and seedling growth after Cd-treatment could be explained, partially, by the disturbance in the mobilization of water and nutrients. NADH-and MDA-activities were considered as markers of oxidative stress. they were substantially increased after Cd-treatment compared with controls but decreased in presence of AH. Excessive NADH oxidase activities proved the install of oxidative stress in Cd poisoned seeds. We suggested an antagonist effect of Cd and HA on oxidative stress enzyme activities. Treatment of seeds with Cd and/or AH maintained a high level of guaiacol peroxidase activities during five days. The possible implication of GPOX against Cd toxicity and the improvement of the antioxidant system after AH treatment proved an important implication of these findings during germination.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.