Abstract
Artificial intelligence (A.I.) increasingly suffuses everyday life. However, people are frequently reluctant to interact with A.I. systems. This challenges both the deployment of beneficial A.I. technology and the development of deep learning systems that depend on humans for oversight, direction, and regulation. Nine studies (N= 3,300) demonstrate that social-cognitive processes guide human interactions across a diverse range of real-world A.I. systems. Across studies, perceived warmth and competence emerge prominently in participants' impressions of A.I. systems. Judgments of warmth and competence systematically depend on human-A.I. interdependence and autonomy. In particular, participants perceive systems that optimize interests aligned with human interests as warmer and systems that operate independently from human direction as more competent. Finally, a prisoner's dilemma game shows that warmth and competence judgments predict participants' willingness to cooperate with a deep-learning system. These results underscore the generality of intent detection to perceptions of a broad array of algorithmic actors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.