Abstract

Trained endurance runners appear to fine-tune running mechanics to minimize metabolic cost. Referred to as self-optimization, the support for this concept has primarily been collated from only a few gait (e.g., stride frequency, length) and physiological (e.g., oxygen consumption, heart rate) characteristics. To extend our understanding, the aim of this study was to examine the effect of manipulating ground contact time on the metabolic cost of running in trained endurance runners. Additionally, the relationships between metabolic cost, and leg stiffness and perceived effort were examined. Ten participants completed 5 × 6-min treadmill running conditions. Self-selected ground contact time and step frequency were determined during habitual running, which was followed by ground contact times being increased or decreased in four subsequent conditions whilst maintaining step frequency (2.67 ± 0.15 Hz). The same self-selected running velocity was used across all conditions for each participant (12.7 ± 1.6 km · h−1). Oxygen consumption was used to compute the metabolic cost of running and ratings of perceived exertion (RPE) were recorded for each run. Ground contact time and step frequency were used to estimate leg stiffness. Identifiable minimums and a curvilinear relationship between ground contact time and metabolic cost was found for all runners (r2 = 0.84). A similar relationship was observed between leg stiffness and metabolic cost (r2 = 0.83). Most (90%) runners self-selected a ground contact time and leg stiffness that produced metabolic costs within 5% of their mathematical optimal. The majority (n = 6) of self-selected ground contact times were shorter than mathematical optimals, whilst the majority (n = 7) of self-selected leg stiffness' were higher than mathematical optimals. Metabolic cost and RPE were moderately associated (rs = 0.358 p = 0.011), but controlling for condition (habitual/manipulated) weakened this relationship (rs = 0.302, p = 0.035). Both ground contact time and leg stiffness appear to be self-optimized characteristics, as trained runners were operating at or close to their mathematical optimal. The majority of runners favored a self-selected gait that may rely on elastic energy storage and release due to shorter ground contact times and higher leg stiffness's than optimal. Using RPE as a surrogate measure of metabolic cost during manipulated running gait is not recommended.

Highlights

  • Self-optimization is the subconscious, fine-tuning of running mechanics to minimize metabolic cost (Cavanagh and Williams, 1982; Williams and Cavanagh, 1987; Moore et al, 2012, 2016), and is believed to be central to developing an economical running gait. Hogberg (1952) provided the first example of systematically manipulating stride length to examine self-optimization in a trained runner and reporting the resultant metabolic response

  • A mathematical optimal ground contact time was identifiable for all participants using a third order polynomial, with a large proportion of variance in metabolic cost explained by ground contact time (r2 = 0.840; Table 1)

  • A similar amount of variance in metabolic cost could be explained by leg stiffness (r2 = 0.826), as it was with ground contact time

Read more

Summary

Introduction

Self-optimization is the subconscious, fine-tuning of running mechanics to minimize metabolic cost (Cavanagh and Williams, 1982; Williams and Cavanagh, 1987; Moore et al, 2012, 2016), and is believed to be central to developing an economical running gait. Hogberg (1952) provided the first example of systematically manipulating stride length to examine self-optimization in a trained runner and reporting the resultant metabolic response. Hogberg (1952) provided the first example of systematically manipulating stride length to examine self-optimization in a trained runner and reporting the resultant metabolic response. This initial work was applied to a larger cohort (n = 10) of trained runners by Cavanagh and Williams (1982). In both studies, a curvilinear, U-shaped relationship was observed highlighting that trained runners were able to self-select a stride length that was at, or near to, their mathematically derived optimal stride length. Limited attention has been given to assessing the optimization of how stride frequency is produced, consideration of ground contact time, which may elicit different athlete-specific responses when manipulated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call