Abstract

The increasing demand for automation and material transportation has shown an incline toward optimal path navigation. The present work implements an intelligent Memory-based gravitational search algorithm (MGSA) with an evolutionary learning strategy to achieve a globally optimal collision-free path. The Evolutionary learning strategy helps improve the diversity among the Gravitational masses/agents, hence improving the overall exploration capability of the model. While the other approaches focus more on an evolutionary strategy based on mutation and cross-overs, the present technique implements the evolutionary strategy based on the position of the fit agents to improve the position of the unfit agents in the population. It ensures a fast-converging path planning result with an improved trajectory. Further, adding a memory-based approach helps the model remember the location of the best agent within the population. The controller is tested with multiple Humanoids on even and uneven terrains and showed a minimal improvement of more than 4% in path length with a minimum 5% deviation in the simulation and experimental results. The proposed approach showed a further improvement of more than 6% compared to the different intelligent path-planning approaches in a similar environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.