Abstract
AbstractTo achieve adaptive gait planning of humanoid robots, a hierarchical central pattern generator (H-CPG) model with a basic rhythmic signal generation layer and a pattern formation layer is proposed to modulate the center of mass (CoM) and the online foot trajectory. The entrainment property of the CPG is exploited for adaptive walking in the absence of a priori knowledge of walking conditions, and the sensory feedback is applied to modulate the generated trajectories online to improve walking adaptability and stability. The developed control strategy is verified using a humanoid robot on sloped terrain and shows good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.