Abstract
It is well established that the neonatal Fc receptor (FcRn) plays a critical role in regulating IgG homeostasis in vivo. As such, modification of the interaction of IgG with FcRn has been the focus of protein-engineering strategies designed to generate therapeutic antibodies with improved pharmacokinetic properties. In the current work, we characterized differences in interaction of IgG between mouse and primate receptors using three humanized anti-tumor necrosis factor alpha antibodies with variant IgG(1) Fc regions. The wild-type and variant IgG showed a differential combination of improved affinity, modified dissociation kinetics, and altered pH-dependent complex dissociation when evaluated on the primate and murine receptors. The observed in vitro binding differences within and between species allowed us to more completely relate these parameters to their influence on the in vivo pharmacokinetics in mice and cynomolgus monkeys. The variant antibodies have different pharmacokinetic behavior in cynomolgus monkeys and mice, which appears to be related to the unique binding characteristics observed with the murine receptor. However, we did not observe a direct relationship between increased binding affinity to the receptor and improved pharmacokinetic properties for these molecules in either species. This work provides further insights into how the FcRn/IgG interaction may be modulated to develop monoclonal antibodies with improved therapeutic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.