Abstract

Models and estimates of Earth’s human carrying capacity vary widely and assume, rather than solve for, binding environmental constraints (the process or resource in shortest supply relative to human biological needs). The binding constraint, and therefore the true upper bound on the number of humans that Earth could sustain indefinitely, remains unknown. We seek to resolve this uncertainty by considering a full range of technological possibilities and incorporating a potential stoichiometric constraint not previously explored. We find that limits to photosynthesis constrain population before micronutrients become limiting unless technological capabilities for utilizing nutrient resources lag far behind other technologies. With ideal technology, human carrying capacity runs into the tens of trillions, while with currently demonstrated technology Earth could support more than 200 billion humans. These numbers reflect neither a desirable nor a natural equilibrium population level, but represent a rough estimate of the maximum number of humans Earth could sustain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.