Abstract

IntroductionAccording to the World Health Organization (WHO), over 130 million people are in constant need of humanitarian assistance due to natural disasters, disease outbreaks, and conflicts, among other factors. These health crises can compromise the resilience of healthcare systems, which are essential for achieving the health objectives of the sustainable development goals (SDGs) of the United Nations (UN). During a humanitarian health crisis, rapid and informed decision making is required. This is often challenging due to information scarcity, limited resources, and strict time constraints. Moreover, the traditional approach to digital health development, which involves a substantial requirement analysis, a feasibility study, and deployment of technology, is ill-suited for many crisis contexts. The emergence of Web 2.0 technologies and social media platforms in the past decade, such as Twitter, has created a new paradigm of massive information and misinformation, in which new technologies need to be developed to aid rapid decision making during humanitarian health crises. ObjectiveHumanitarian health crises increasingly require the analysis of massive amounts of information produced by different sources, such as social media content, and, hence, they are a prime case for the use of artificial intelligence (AI) techniques to help identify relevant information and make it actionable. To identify challenges and opportunities for using AI in humanitarian health crises, we reviewed the literature on the use of AI techniques to process social media. MethodologyWe performed a narrative literature review aimed at identifying examples of the use of AI in humanitarian health crises. Our search strategy was designed to get a broad overview of the different applications of AI in a humanitarian health crisis and their challenges. A total of 1459 articles were screened, and 24 articles were included in the final analysis. ResultsSuccessful case studies of AI applications in a humanitarian health crisis have been reported, such as for outbreak detection. A commonly shared concern in the reviewed literature is the technical challenge of analyzing large amounts of data in real time. Data interoperability, which is essential to data sharing, is also a barrier with regard to the integration of online and traditional data sources.Human and organizational aspects that might be key factors for the adoption of AI and social media remain understudied. There is also a publication bias toward high-income countries, as we identified few examples in low-income countries. Further, we did not identify any examples of certain types of major crisis, such armed conflicts, in which misinformation might be more common. ConclusionsThe feasibility of using AI to extract valuable information during a humanitarian health crisis is proven in many cases. There is a lack of research on how to integrate the use of AI into the work-flow and large-scale deployments of humanitarian aid during a health crisis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.