Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women of reproductive age, is characterized by hyperandrogenism and insulin resistance (IR); however, the pathogenesis of local ovarian IR in PCOS remains largely unclear. Humanin, a mitochondria-derived peptide, has been reported to be associated with IR. Our previous study confirmed that humanin is expressed in multiple cell types in the ovary and is present in follicular fluid. However, it remains unknown whether humanin participates in the pathogenesis of local ovarian IR or whether humanin supplementation can improve IR in PCOS patients. In this study, we compared humanin concentrations in follicular fluid from PCOS patients with and without IR. We further investigated the effect of humanin analogue (HNG) supplementation on IR in a rat model of dehydroepiandrosterone-induced PCOS. Humanin concentrations in the follicular fluid were found to be significantly lower in PCOS patients with IR than in those without IR. HNG supplementation attenuated both the increases in the levels of fasting plasma glucose and fasting insulin in rats with PCOS and the decreases in phosphorylation of IRS1, PI3K, AKT, and GLUT4 proteins in the granulosa cells of these rats. Combined supplementation with HNG and insulin significantly improved glucose consumption in normal and humanin-siRNA-transfected COV434 cells. In conclusion, downregulated humanin in the ovaries may be involved in the pathogenesis of IR in PCOS, and exogenous supplementation with HNG improved local ovarian IR through modulation of the IRS1/PI3K/Akt signaling pathway in a rat model. This finding supports the potential future use of HNG as a therapeutic drug for PCOS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.