Abstract

To investigate the interaction between human Wharton's jelly cells (WJCs) and degenerative nucleus pulposus cells (NPCs), human WJCs were cocultured with degenerative NPCs with or without direct cell-cell contact. WJCs were isolated from the human umbilical cord and degenerative NPCs were isolated from the surgically obtained degenerative intervertebral disc tissue. The isolated WJCs positively expressed CD73, CD105, CD90, CD29, CD166, and human leukocyte antigen (HLA)-ABC, but negatively expressed CD34, CD45, and HLA-DR. After coculturing with three different WJCs:NPCs ratios for 7 days, the real-time polymerase chain reaction showed that the relative gene expression of nucleus pulposus (NP)-marker genes [aggrecan, type II collagen, and SRY-type HMG box-9 (SOX-9)] was significantly upgraded in all coculture groups (all p < 0.05 compared with control groups). Coculture either with or without cell-cell contact significantly activated the expression of NP-maker genes than controls, but coculture with cell-cell contact yielded a higher gene expression than coculture without cell-cell contact. In coculturing with cell-cell contact and WJCs:NPCs of 25:75, the relative gene expression of aggrecan, type II collagen, SOX-9 for WJCs yielded the highest increase by 721-, 1507-, and 1463-folds, respectively (all p < 0.05 compared with WJCs control). In contrast, the highest relative gene expression of aggrecan, type II collagen, SOX-9 for NPCs was 112-, 84-, and 109-folds, respectively, in coculture with cell-cell contact and in WJCs:NPCs of 75:25 (all p < 0.05 compared with NPCs control). In conclusion, the data indicated that coculturing human WJCs with degenerative NPCs induced the NP-like cell differentiation of WJCs and restored the biological status of degenerative NPCs and coculture WJCs and NPCs with direct cell-cell contact yielded more favorable gene expressions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.