Abstract

In a cockpit, the crewstation of an airplane, the ability of the pilot to unambiguously perceive rapidly changing information both internal and external to the crewstation is critical. To assess the impact of crewstation design decisions on the pilot''s ability to perceive information, the designer needs a means of evaluating the trade-offs that result from different designs. The Visibility Modeling Tool (VMT) provides the designer with a CAD tool for assessing these trade-offs. It combines the technologies of computer graphics, computational geometry, human performance modeling and equipment modeling into a computer-based interactive design tool. Through a simple interactive interface, a designer can manipulate design parameters such as the geometry of the cockpit, environmental factors such as ambient lighting, pilot parameters such as point of regard and adaptation state, and equipment parameters such as the location of displays, their size and the contrast of displayed symbology. VMT provides an end-to-end analysis that answers questions such as ''Will the pilot be able to read the display?'' Performance data can be projected, in the form of 3D contours, into the crewstation graphic model, providing the designer with a footprint of the operator''s visual capabilities, defining, for example, the regions in which fonts of a particular type, size and contrast can be read without error. Geometrical data such as the pilot''s volume field of view, occlusions caused by facial geometry, helmet margins, and objects in the crewstation can also be projected into the crewstation graphic model with respect to the coordinates of the aviator''s eyes and fixation point. The intersections of the projections with objects in the crewstation, delineate the area of coverage, masking, or occlusion associated with the objects. Objects in the crewstation space can be projected onto models of the operator''s retinas. These projections can be used to provide the designer with the retinal coordinates and the visual angles subtended by objects in the crewstation space. Both the right and left eye retinal projections are mapped. The retinal map is yoked to the fixation point and changes as the fixation point is interactively manipulated. Performance contours on the retinas can also be indicated thus, aiding the designer in understanding the limitations to visibility imposed by retinotopic processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.