Abstract
Background— Ischemic ventricular fibrillation in experimental models has been shown to progress through a series of stages. Progression of ischemic VF in the in vivo human heart has not been determined. Methods and Results— We studied 10 patients undergoing cardiac surgery. Ventricular fibrillation was induced by burst pacing. After 30 seconds, global myocardial ischemia was induced by aortic cross-clamp and maintained for 2.5 minutes, followed by coronary reflow. Epicardial activity was sampled (1 kHz) with a sock that contained 256 unipolar contact electrodes. Dominant frequencies were calculated with a fast Fourier transform with a moving window. The locations of phase singularities and activation wavefronts were identified at 10-ms intervals. Preischemic (perfused) ventricular fibrillation was maintained by a disorganized mix of large and small wavefronts. During global myocardial ischemia, mean dominant frequencies decreased from 6.4 to 4.7 Hz at a rate of −0.011±0.002 Hz s −1 ( P <0.001) and then increased rapidly to 7.4 Hz within 30 seconds of reflow. In contrast, the average number of epicardial phase singularities increased during ischemia from 7.7 to 9.7 at a rate of 0.013±0.005 phase singularities per second ( P <0.01) and remained unchanged during reflow, at 10.3. The number of wavefronts showed a similar time course to the number of phase singularities. Conclusions— In human ventricular fibrillation, we found an increase in complexity of electric activation patterns during global myocardial ischemia, and this was not reversed during reflow despite an increase in activation rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.