Abstract

The clinical complications associated with severe and cerebral malaria occur as a result of the intravascular mechanical obstruction of erythrocytes infected with the asexual stages of the parasite, Plasmodium falciparum. We now report that a primary P. falciparum-infected erythrocyte (parasitized red blood cell [PRBC]) isolate from a patient with severe complicated malaria binds to cytokine-induced human vascular endothelial cells, and that this adhesion is in part mediated by endothelial leukocyte adhesion molecule 1 (ELAM-1) and vascular cell adhesion molecule 1 (VCAM-1). PRBC binding to tumor necrosis factor alpha (TNF-alpha)-activated human vascular endothelial cells is partially inhibited by antibodies to ELAM-1 and ICAM-1 and the inhibitory effects of these antibodies is additive. PRBCs selected in vitro by sequential panning on purified adhesion molecules bind concurrently to recombinant soluble ELAM-1 and VCAM-1, and to two previously identified endothelial cell receptors for PRBCs, ICAM-1, and CD36. Post-mortem brain tissue from patients who died from cerebral malaria expressed multiple cell adhesion molecules including ELAM-1 and VCAM-1 on cerebral microvascular endothelium not expressed in brains of individuals who died from other causes. These results ascribe novel pathological functions for both ELAM-1 and VCAM-1 and may help delineate alternative adhesion pathways PRBCs use to modify malaria pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.