Abstract

As a fatal cardiovascular complication, coronary microembolization (CME) results in severe cardiac dysfunction and arrhythmia associated with myocardial inflammation and apoptosis. Human urinary kallidinogenase (HUK) can provide a protective function for cardiomyocytes by improving microcirculation. However, the therapeutic effects and underlying mechanisms of HUK in CME-induced myocardial injury remain unclear. We evaluated the effect of HUK on cardiac protection in a rat model of CME and whether it could restrain myocardial inflammation and apoptosis, and alleviate CME-induced myocardial injury. We established the CME model by injecting 42 μm inert plastic microspheres into the left ventricle of rats in advance, then the rats were randomly and equally divided into CME, CME + HUK (the dose of HUK at 0.016 PNA/kg/day), CME + HUK + LY (the dose of LY294002 at 10 mg/kg, 30 minutes before modeling), and Sham operation groups. Cardiac function, the serum levels of myocardial injury biomarkers, myocardial inflammation and apoptosis-related genes were measured; and the myocardial histopathological examination was performed at 12 h after the operation. The results revealed that HUK effectively reducing myocardial inflammation, apoptosis, and myocardial infarction area; and improving CME-induced cardiac injury by activating the PI3K/Akt/FoxO1 axis. In addition, these cardioprotective effects can be reduced by the PI3K specific inhibitor LY294002, suggesting that the aforementioned protective effects may be related to activation of the PI3K/Akt/FoxO1 axis. HUK seems to control inflammatory infiltration and cardiomyocyte apoptosis significantly to improve CME-induced cardiac injury via regulating the PI3K/Akt/FoxO1 axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call