Abstract
Most patients with a corneal injury are administered anti-inflammatory medications and antibiotics, but no other treatments are currently available. Thus, the corneal injury healing is unsatisfactory, affects the vision, and has a risk of blindness in severe cases. Human umbilical mesenchymal stem cells exhibit pluripotent and anti-inflammatory properties and do not cause immunological rejection in the host. Rats were irradiated with type B ultraviolet (UVB) light to generate a stable animal model of photokeratitis. After irradiation-induced photokeratitis, human umbilical mesenchymal stem cells were implanted into the subconjunctival space of the lateral sclera, and the changes in the corneal pathology were evaluated. Three weeks after implantation, many mesenchymal stem cells were visible in the subconjunctival space. These mesenchymal stem cells effectively reduced the extent of injury to the adjacent corneal tissue. They accelerated the epithelial layer repair, reduced the inflammatory response and neovascularization, and improved the disorganization of collagen and fibronectin in the corneal stroma caused by the injury. In conclusion, xenografted human umbilical mesenchymal stem cells can survive in rat eye tissues for a long time, effectively support the structural integrity of injured corneal tissues, restore corneal permeability, and reduce abnormal neovascularization. This study provides a new approach to the treatment of photokeratitis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.