Abstract

BackgroundTo reduce young female fertility loss, the in-vitro culture of cryopreserved ovarian cortical tissues (OCTs) is considered an effective approach without delaying treatment and undergoing stimulation medicine. However, ischemic damage and follicular loss during the in-vitro culture of OCTs are major technical challenges. Human umbilical cord stem cells (HUMSCs) and their conditioned medium (HUMSC-CM) have been considered to be potential resources for regeneration medicine because they secrete cytokines and enhance cell survival and function. The aim of this study was to determine whether HUMSC-CM improves the development of frozen-thawed in-vitro cultured ovarian tissues compared with a serum-free culture medium (SF-CM).MethodsThe thawed OCTs (n = 68) were cultivated in HUMSC-CM and SF-CM in vitro for 8 days, and the ovarian tissues were processed and analyzed by a classical histological evaluation. The microvessel density (MVD) and apotosis detection during in-vitro culture of OCTs were also performed.ResultsA significant difference in the rate of morphologically normal primordial follicles in the HUMSC-CM group was observed compared to that in the SF-CM group (group C) from days 2 to 4 (day 2: group B 58.0 ± 2.45% vs group C 32.0 ± 5.83%, p = 0.002; day 3: group B 55.5 ± 4.20% vs group C 21.0 ± 9.80%, p = 0.048; day 4: group B 52.0 ± 4.08% vs group C 21.5 ± 8.19%, p = 0.019). The microvessel density (MVD) detection showed a time-dependent increase and peaked on day 4. There was a significant difference between groups B (49.33 ± 0.58) and C (24.33 ± 3.79) (p = 0.036). The percentage of apoptotic follicles in group B was lower than that in group C on day 1 (13.75 ± 2.50% vs 27.0 ± 10.10%, p = 0.003), day 5 (11.75 ± 1.50% vs 51.0 ± 10.5%, p = 0.019) and day 7 (15.0 ± 5.10% vs 46.5 ± 21.75%, p = 0.018).ConclusionsThese data have provided the first experimental evidence of the effect of HUMSC-CM on frozen-thawed OCTs in vitro. The results showed that the HUMSC-CM group provided a better protecting effect on the in-vitro culture of the cryopreserved OCTs compared to the SF-CM group.

Highlights

  • To reduce young female fertility loss, the in-vitro culture of cryopreserved ovarian cortical tissues (OCTs) is considered an effective approach without delaying treatment and undergoing stimulation medicine

  • Obtaining, cultivating, and characterizing Human umbilical cord stem cell (HUMSC) Primary cells were successfully isolated from the umbilical cords and, after 72 h of adherent growth, the cells morphologically resembled fibroblasts and became confluent (Fig. 1a)

  • Preantral follicles were preserved in good morphology after the cryopreservation in the HUMSC-CM group and serum-free culture medium (SF-CM) group

Read more

Summary

Introduction

To reduce young female fertility loss, the in-vitro culture of cryopreserved ovarian cortical tissues (OCTs) is considered an effective approach without delaying treatment and undergoing stimulation medicine. Ischemic damage and follicular loss during the in-vitro culture of OCTs are major technical challenges. Compared with embryo and oocyte freezing, ovarian tissue cryopreservation (OTC) could be offered to prepubertal girls, premarital women, or married women who cannot delay cancer treatment or injections of ovarian stimulating medicines [3]. OTC offers the potential to restore natural fertility by thawing and transplanting the ovarian tissues (OTs) or maturing the oocytes in vitro (IVM) to allow their development in the future. Ischemic damage and follicular loss during the in-vitro culture of the cryopreserved OTs remain the main challenges [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call