Abstract
Chemotherapies can cause germ cell depletion and gonadal failure. When injected post-chemotherapy, mesenchymal stromal cells (MSCs) from various sources have been shown to have regenerative effects in rodent models of chemotherapy-induced gonadal injury. Here, we evaluated two properties of a novel source of MSC, first trimester (FTM) human umbilical cord perivascular cells (HUCPVCs) (with increased regenerative potential compared to older sources), that may render them a promising candidate for chemotherapeutic gonadal injury prevention. Firstly, their ability to resist the cytotoxic effects of cyclophosphamide (CTX) in vitro, as compared to term HUCPVCs and bone marrow cells (BMSCs); and secondly, whether they prevent gonadal dysfunction if delivered prior to gonadotoxic therapy in vivo. BMSC, FTM HUCPVC, term HUCPVC, and control NTERA2 cells were treated with moderate (150μmol/L) and high (300μmol/L) doses of CTX in vitro. Viability, proliferative capacity, mesenchymal cell lineage markers and differentiation capacity, immunogenicity, and paracrine gene expression were assessed. CTX was administered to Wistar rats 2 days following an intra-ovarian injection of FTM HUCPVC. HUCPVC survival and ovarian follicle numbers were assessed using histological methods. We conclude that FTM HUCPVC maintain key regenerative properties following chemotherapy exposure and that pre-treatment with these cells may prevent CTX-induced ovarian damage in vivo. Therefore, HUCPVCs are promising candidates for fertility preservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.