Abstract

To investigate whether human umbilical cord mesenchymal stem cell-derived exosomes combined with gelatin methacryloyl (GelMA) hydrogel are beneficial in promoting healing of laser-injured skin wounds in mice. Supernatants of cultured human umbilical cord mesenchymal stem cells (HUC-MSCs) were collected to obtain human umbilical cord MSC-derived exosomes (HUC-MSCs-Exos), which were combined with GelMA hydrogel complex to treat a mouse fractional laser injury model. The study was divided into PBS group, EX (HUC-MSCs-Exos) group, GEL (GelMA hydrogel) group and EX+GEL (HUC-MSCs-Exos combined with GelMA hydrogel) group. The healing of laser-injured skin in each group was observed by gross view and dermatoscopy, and changes in skin structure, angiogenesis and proliferation-related indexes were observed during the healing process of laser-injured skin in each group. The results of the animal experiments showed that the EX and GEL groups alone and the EL+EX group exhibited less inflammatory response compared to the PBS group. The EX and GEL groups showed marked tissue proliferation and favourable angiogenesis, which promoted the wound healing well. The GEL+EX group had the most significant promotion of wound healing compared to the PBS group. qPCR results showed that the expression levels of proliferation-related factors, including KI67 and VEGF and angiogenesis-related factor CD31, were significantly higher in the GEL+EX group than in the other groups, with a time-dependent effect. The combination of HUC-MSCs-Exos and GelMA hydrogel is beneficial in reducing the early inflammatory response of laser-injured skin in mice and promoting its proliferation and angiogenesis, which in turn promotes wound healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.