Abstract

To explore molecular mechanisms by which umbilical cord-derived mesenchymal stem cells suppress the development of GVHD after bone marrow hematopoietic stem cell transplantation. A mouse model of aGVHD was constructed after bone marrow hematopoietic stem cell transplantation, and the umbilical cord-derived mesenchymal stem cells were cultured, and then injected into the aGVHD mouse model, so as to investigate its prophylactic efficacy. Prophylactic effect of the exosomes isolated from umbilical cord-derived mesenchymal stem cells on aGVHD mice was assessed. Sequencing analysis of miRNA from exosomes was performed. aGVHD model was successfully constructed after hematopoietic stem cell transplantation. By injecting umbilical cord-derived mesenchymal stem cells into the GVHD mouse model, it was found that the treatment significantly prolonged survival time of mice compared to the untreated group. Injection exosomes derived from umbilical cord-derived mesenchymal stem cells into the GVHD mouse model significantly prolonged the survival time of mice compared to the untreated group. High-throughput sequencing data showed that microRNA such as miR-21 in exosomes isolated from umbilical cord-derived mesenchymal stem cells, which mainly affected the signaling pathways such as cell adhesion, RNA degradation. The umbilical cord-derived mesenchymal stem cells can prevent the occurrence of aGVHD after HSCT, which is mediate by MicroRNA in the exosomes derived from umbilical cord-derived mesenchymal stem cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call