Abstract

AimExosomes, as a nanocarrier for the co-delivery of biologicals and small anticancer molecules is yet in its infancy. Herein, we investigated hUCBMSC derived exosomes as a biogenic nanocarrier for the co-delivery of tumor suppressor miR-125a and microtubule destabilizing Docetaxel (DTX) to target the proliferative and migratory aggressiveness of the murine TNBC 4T1 cells. Main methodsIn this study, hUCBMSCs from the human umbilical cord blood cells (hUCB) were successfully transfected with miR-125a. Thereafter, DTX was encapsulated into both non-transfected and transfected exosomes by optimized mild sonication-incubation technique. The anticancer efficiency of hUCBMSC Exo-DTX and miR-125a Exo-DTX was compared by MTT and morphometric assay. The prominent anti-metastatic behaviour of the latter was confirmed by in-vitro wound healing and transwell invasion assay. Further, the synergistic effect of miR-125a and DTX was confirmed by F-actin and nuclear degradation by confocal and FESEM assay. Key findingshUCBMSC exosomes exhibited DTX payload of 8.86 ± 1.97 ng DTX/ μg exosomes and miRNA retention capacity equivalent to 12.31 ± 5.73 %. The co-loaded formulation (miR-125a Exo-DTX) exhibited IC50 at 192.8 ng/ml in 4T1 cells, which is almost 2.36 folds' lower than the free DTX IC50 (472.8 ng/ml). Additionally, miR-125a Exo-DTX treatment caused wound broadening upto 6.14±0.38 % while treatment with free DTX and miR-125a exosomes alone caused 18.71±4.5 % and 77.36±10.4 % of wound closure respectively in 36 h. miR-125a Exo-DTX treatment further exhibited significantly reduced invasiveness of 4T1 cells (by 3.5 ± 1.8 %) along with prominent cytoskeletal degradation and nuclear deformation as compared to the miR-125a exosomes treated group. The miR-125a expressing DTX loaded exosomal formulation clearly demonstrated the synergistic apoptotic and anti-migratory efficiency of the miR-125a Exo-DTX. SignificanceThe synergistic anticancer and anti-metastatic effect of miR-125a Exo-DTX was observed due to presence of both DTX and miR-125a as the cargo of hUCBMSC derived exosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.