Abstract

Apolipoprotein L-1 (APOL1), the trypanolytic factor of human serum, can lyse several African trypanosome species including Trypanosoma brucei brucei, but not the human-infective pathogens T. brucei rhodesiense and T. brucei gambiense, which are resistant to lysis by human serum. Lysis follows the uptake of APOL1 into acidic endosomes and is apparently caused by colloid-osmotic swelling due to an increased ion permeability of the plasma membrane. Here we demonstrate that nanogram quantities of full-length recombinant APOL1 induce ideally cation-selective macroscopic conductances in planar lipid bilayers. The conductances were highly sensitive to pH: their induction required acidic pH (pH 5.3), but their magnitude could be increased 3,000-fold upon alkalinization of the milieu (pK(a) = 7.1). We show that this phenomenon can be attributed to the association of APOL1 with the bilayer at acidic pH, followed by the opening of APOL1-induced cation-selective channels upon pH neutralization. Furthermore, the conductance increase at neutral pH (but not membrane association at acidic pH) was prevented by the interaction of APOL1 with the serum resistance-associated protein, which is produced by T. brucei rhodesiense and prevents trypanosome lysis by APOL1. These data are consistent with a model of lysis that involves endocytic recycling of APOL1 and the formation of cation-selective channels, at neutral pH, in the parasite plasma membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.