Abstract

We have shown previously that simple RNA structures bind pure phospholipid liposomes. However, binding of bona fide cellular RNAs under physiological ionic conditions is shown here for the first time. Human tRNA(Sec) contains a hydrophobic anticodon-loop modification: N⁶-isopentenyladenosine (i⁶A) adjacent to its anticodon. Using a highly specific double-probe hybridization assay, we show mature human tRNA(Sec) specifically retained in HeLa intermediate-density membranes. Further, isolated human tRNA(Sec) rebinds to liposomes from isolated HeLa membrane lipids, to a much greater extent than an unmodified tRNA(Sec) transcript. To better define this affinity, experiments with pure lipids show that liposomes forming rafts or including positively charged sphingosine, or particularly both together, exhibit increased tRNA(Sec) binding. Thus tRNA(Sec) residence on membranes is determined by several factors, such as hydrophobic modification (likely isopentenylation of tRNA(Sec)), lipid structure (particularly lipid rafts), or sphingosine at a physiological concentration in rafted membranes. From prior work, RNA structure and ionic conditions also appear important. tRNA(Sec) dissociation from HeLa liposomes implies a mean membrane residence of 7.6 min at 24°C (t(1/2) = 5.3 min). Clearly RNA with a 5-carbon hydrophobic modification binds HeLa membranes, probably favoring raft domains containing specific lipids, for times sufficient to alter biological fates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.