Abstract
Tacaribe virus (TCRV) entry occurs by receptor-mediated endocytosis. To explore the entry mechanism used by TCRV, the inhibitory effects of drugs and dominant negative (DN) constructions affecting the main endocytic pathways were analyzed. In cells lacking the human transferrin receptor (hTfR), compounds and DN proteins that impair clathrin-mediated endocytosis were shown to reduce virus internalization without affecting virion binding. In contrast, in cells expressing the hTfR, compounds that affect clathrin-mediated endocytosis did not affect TCRV infection. Destabilization of cholesterol-rich plasma membrane microdomains by treatment with nystatin was not able to block virus entry in the presence of hTfR. However methyl-β-cyclodextrin, which extracts cholesterol from cell membranes, reduced virus internalization in cells expressing the hTfR. Inhibition of dynamin and neutralization of the pH of intracellular vesicles reduced virus internalization in all cell lines tested. Taken together, these results demonstrate that in cells expressing the hTfR, TCRV internalization depends on the presence of cholesterol, dynamin and acidic intracellular vesicles, while in the rest of the cell lines analyzed, clathrin-mediated endocytosis is the main TCRV entry pathway and, as expected, depends on dynamin and acidic intracellular vesicles. These results represent an important contribution to the characterization of the arenavirus replication cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.