Abstract

We have developed a human tracking system for use by robots that integrate sound and face localization. Conventional systems usually require many microphones and/or prior information to localize several sound sources. Moreover, they are incapable of coping with various types of background noise. Our system, the cross-power spectrum phase analysis of sound signals obtained with only two microphones, is used to localize the sound source without having to use prior information such as impulse response data. An expectation-maximization (EM) algorithm is used to help the system cope with several moving sound sources. The problem of distinguishing whether sounds are coming from the front or back is also solved with only two microphones by rotating the robot's head. A developed method that uses facial skin colors classified by another EM algorithm enables the system to detect faces in various poses. It can compensate for the error in the sound localization for a speaker and also identify noise signals entering from undesired directions by detecting a human face. A developed probability-based method is used to integrate the auditory and visual information in order to produce a reliable tracking path in real-time. Experiments using a robot showed that our system can localize two sounds at the same time and track a communication partner while dealing with various types of background noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.