Abstract
This research provides two main changes based on Detect-And-Track. To improve the Multi-Object Tracking Accuracy (MOTA) while keeping the lightweight of the original approach, this paper proposes a gradient approach to obtain higher MOTA. We use the location of two previous frames of the same identified person to calculate the gradient for the location prediction of the current frame. Then, the predicted and the detected locations are compared. We also compare the current and previous detections. With a weighted combination for matching, we increase the MOTA score and improve the results of Detect-And-Track. Moreover, this research replaces cosine distance, the original feature extractor, with Euclidean distance. By doing so, feature extraction can match Intersection over Union (IoU) better. The weighted combination, which consists of IoU and Euclidean distance, provides a better MOTA than Detect-And-Track. In addition, a greedy approach facilitates a higher MOTA when implement with IoU and Euclidean distance. This weighted combination utility is superior than the combination of IoU and cosine distance, achieving 56.1% MOTA in total on the validation data of PoseTrack ICCV’17 dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.