Abstract

We recently reported that human T-lymphotropic virus type 1 (HTLV-1) infection is accompanied by a high frequency of CD4(+)FoxP3(+) cells in the circulation. In asymptomatic carriers of HTLV-1 and in patients with HTLV-1-associated inflammatory and malignant diseases, a high FoxP3(+) cell frequency correlated with inefficient cytotoxic T cell-mediated killing of HTLV-1-infected cells. In adult T cell leukemia/lymphoma (ATLL), the FoxP3(+) population was distinct from the leukemic T cell clones. However, the cause of the increase in FoxP3(+) cell frequency in HTLV-1 infection was unknown. In this study, we report that the plasma concentration of the chemokine CCL22 is abnormally high in HTLV-1-infected subjects and that the concentration is strongly correlated with the frequency of FoxP3(+) cells, which express the CCL22 receptor CCR4. Further, we show that CCL22 is produced by cells that express the HTLV-1 transactivator protein Tax, and that the increased CCL22 enhances the migration and survival of FoxP3(+) cells in vitro. Finally, we show that FoxP3(+) cells inhibit the proliferation of ex vivo, autologous leukemic clones from patients with ATLL. We conclude that HTLV-1-induced CCL22 causes the high frequency of FoxP3(+) cells observed in HTLV-1 infection; these FoxP3(+) cells may both retard the progression of ATLL and HTLV-1-associated inflammatory diseases and contribute to the immune suppression seen in HTLV-1 infection, especially in ATLL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call