Abstract
The state of the five half-cystine residues in human tissue factor (TF) has been characterized. The results indicate that the four half-cystines in the extracellular domain of TF form two disulfide bonds and the half-cystine in the cytoplasmic region is acylated by palmitic acid and stearic acid. The extracellular disulfide cross-links, Cys49-Cys57 and Cys186-Cys209, were deduced from the analysis of tryptic peptides. Acylation of the cytoplasmic half-cystine was demonstrated by purifying and characterizing fibroblast TF from cells labeled with [3H]palmitic acid. Radiolabeled fibroblast TF was observed by autoradiography following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The tritiated material covalently bound to the protein was identified as [3H]palmitate and [3H]stearate by reverse-phase high-pressure liquid chromatography. Deacylation of TF with hydroxylamine resulted in the spontaneous generation of disulfide-linked TF dimers. This result suggests that the disulfide-linked TF dimer, a minor component of most TF preparations, and the recently described heterodimeric form of TF are artifacts produced by deacylation of Cys245 and subsequent interchain disulfide bond formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.