Abstract

High dynamic range optical-to-near-infrared transmission measurements for different parts of human body in the spectral range from 650 to 950 nm have been performed. Experimentally measured spectra are correlated with Monte Carlo simulations using chromaticity coordinates in CIE 1976 L*a*b* color space. Both a qualitative and a quantitative agreement have been found, paving a new way of characterizing human tissues in vivo. The newly developed experimental and computational platform for assessing tissue transmission spectra is anticipated to have a considerable impact on identifying favorable conditions for laser surgery and optical diagnostics, while providing supplementary information about tissue properties.

Highlights

  • The spectral and colorimetric studies of biological tissues are of a considerable interest from the point of view of potential development of new techniques for non-invasive in vivo imaging and spectroscopic characterization of biological and human tissues and monitoring variations of their properties without amending their physiological state [1,2,3]

  • There were numerous attempts to evaluate optical tissue properties by assessing both scattering and absorption properties of tissues

  • We performed the pilot experimental studies of the near-IR spectral transmission measurements through a bulk tissue samples in vivo. Those results provide a quantitative measure of the light transmitted through a certain body area as a function of the incident wavelength in the biologically significant optical transmission window

Read more

Summary

Introduction

The spectral and colorimetric studies of biological tissues are of a considerable interest from the point of view of potential development of new techniques for non-invasive in vivo imaging and spectroscopic characterization of biological and human tissues and monitoring variations of their properties without amending their physiological state [1,2,3]. This is especially important for a number of practical applications including medical diagnostics [4], plastic surgery [5], face recognition for security needs [6], as well as for the optical design of a particular diagnostic system. The computational data are compared with the experimental data obtained using high-dynamic range spectral transmission measurements through different parts of a human body, which are accessible through those measurements

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.