Abstract

Background and Objectives: Thermal conditions are changeable in cabin space, where occupants could suffer consecutive self-thermoregulation to such changing thermal stresses. Thermal environment management is expected to be purposefully auto-adjustable for the environment by recognizing individual real-time thermal sensations. Current thermal sensation evaluation models are developed for virtual simulations rather than for realistic scenarios, challenging to evaluate human thermal sensation in the field surveys.Methods: The study constructs a human thermal sensation model via human physiological responses to evaluate the human thermal sensation in the actual vehicle environment. The thermal sensation model forms with exponential functions to clarify the relationship between thermal sensation and pulse rate and blood pressure, which successfully expresses the approximately linear trend around neutral sensation and compensates for the end-points bias. The study set up experimental cases to determine the parameter states in the thermal sensation model. Firstly, subjective thermal sensation scoring was performed by combing with an established seven-point-scale questionnaire survey system for human thermal sensation. Wearable sensors are then applied to measure the human physiological response, including blood pressure BP, pulse rate PR and blood oxygen saturation SpO2.Results: The subjects revealed significantly higher pulse rates (positively correlated) and lower blood pressure (negatively correlated) in the warm chamber than in the cool chamber. The defined parameter change rate effectively reveals the trend of human thermal sensation and avoids the inconsistency of raw physiological response levels. The change rate in PR and MAP between the thermal sensation in cold -3 and hot +3 is about a 10% difference.Conclusions: Based on the thermal sensation model algorithm, model parameters were fitted by the subjects’ thermal sensation voting and the change rate of their physiological responses. With the coefficient of determination (R2) of the regression over 0.8, the proposed thermal sensation model can be employed for human thermal sensation evaluation. The physiological thermoregulatory responses effectively indicate the thermal state of the human body and can be used in thermal environments in conjunction with human smart wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.