Abstract

We continuously move our eyes when we inspect a visual scene. Although this leads to a rapid succession of discontinuous and fragmented retinal snapshots, we perceive the world as stable and coherent. Neural mechanisms underlying visual stability may depend on internal monitoring of planned or ongoing eye movements. In the macaque brain, a pathway for the transmission of such signals has been identified that is relayed by central thalamic nuclei. Here, we studied a possible role of this pathway for perceptual stability in a patient with a selective lesion affecting homologous regions of the human thalamus. Compared with controls, the patient exhibited a unilateral deficit in monitoring his eye movements. This deficit was manifest by a systematic inaccuracy both in successive eye movements and in judging the locations of visual stimuli. In addition, perceptual consequences of oculomotor targeting errors were erroneously attributed to external stimulus changes. These findings show that the human brain draws on transthalamic monitoring signals to bridge the perceptual discontinuities generated by our eye movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.