Abstract

BackgroundThe emergency department (ED) increasingly acts as a gateway to the evaluation and treatment of acute illnesses. Consequently, it has also become a key testing ground for systems that monitor and identify outbreaks of disease. Here, we describe a new technology that automatically collects body temperatures during triage. The technology was tested in an ED as an approach to monitoring diseases that cause fever, such as seasonal flu and some pandemics.MethodsTemporal artery thermometers that log temperature measurements were placed in a Boston ED and used for initial triage vital signs. Time-stamped measurements were collected from the thermometers to investigate the performance a real-time system would offer. The data were summarized in terms of rates of fever (temperatures ≥100.4 °F [≥38.0 °C]) and were qualitatively compared with regional disease surveillance programs in Massachusetts.ResultsFrom September 2009 through August 2011, 71,865 body temperatures were collected and included in our analysis, 2073 (2.6 %) of which were fevers. The period of study included the autumn–winter wave of the 2009–2010 H1N1 (swine flu) pandemic, during which the weekly incidence of fever reached a maximum of 5.6 %, as well as the 2010–2011 seasonal flu outbreak, during which the maximum weekly incidence of fever was 6.6 %. The periods of peak fever rates corresponded with the periods of regionally elevated flu activity.ConclusionsTemperature measurements were monitored at triage in the ED over a period of 2 years. The resulting data showed promise as a potential surveillance tool for febrile disease that could complement current disease surveillance systems. Because temperature can easily be measured by non-experts, it might also be suitable for monitoring febrile disease activity in schools, workplaces, and transportation hubs, where many traditional syndromic indicators are impractical. However, the system’s validity and generalizability should be evaluated in additional years and settings.Electronic supplementary materialThe online version of this article (doi:10.1186/s12873-016-0080-7) contains supplementary material, which is available to authorized users.

Highlights

  • The emergency department (ED) increasingly acts as a gateway to the evaluation and treatment of acute illnesses

  • Characteristics of body temperatures recorded in the ED Between September 10, 2009 and August 29, 2011, 71,865 body temperatures were electronically recorded by the automatic data logging system and met the inclusion criteria

  • The median body temperature was 98.0 °F (36.7 °C) with an interquartile range of 97.4–98.7 °F (36.3–37.1 °C). These values are consistent with previous reports [21]

Read more

Summary

Introduction

The emergency department (ED) increasingly acts as a gateway to the evaluation and treatment of acute illnesses It has become a key testing ground for systems that monitor and identify outbreaks of disease. The emergency department (ED) increasingly acts as a gateway to the evaluation and treatment of acute illnesses, ranging from seasonal influenza to novel disease outbreaks, and has become a key site for syndromic surveillance. Surveillance by the United States Centers for Disease Control and Prevention (CDC) focuses on especially clear indicators of influenza, such as virologic testing and outpatient visits for influenza-like illness (ILI) [4, 5] Because these indicators are difficult to collect rapidly and at scale, CDC surveillance has been limited to delayed weekly reports, and concerted efforts to improve timeliness and local coverage have been discontinued [6]. Google stopped publishing a similar website that was designed to monitor dengue fever (Google Dengue Trends [12])

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.