Abstract
Telomerase is a specialized reverse transcriptase that extends telomeres of eukaryotic chromosomes. The catalytic core of human telomerase is composed of an RNA template known as hTER (human telomerase RNA) and a protein subunit named hTERT (human telomerase reverse transcriptase). We have been studying other functions of the telomerase besides its major role in telomere maintenance. In our previous work, we have demonstrated that the hTERT can functionally interact with a rabbit TER to regulate expression of other genes and also attenuate the induced apoptosis. Here we report that overexpression of hTERT in a human lens epithelial cell line accelerates growth of the transfected lens epithelial cells. Associated with the acceleration of cell growth, expression of p53, p21 and GCIP (Grap2 cyclin-D interacting protein) is downregulated in the hTERT-transfected cells. With the downregulation of p21 and GCIP, the retinoblastoma protein (RB) is completely hyperphosphorylated in the hTERT-transfected cells. As expected, in the presence of RB hyperphosphorylation, the E2F transactivity is upregulated. Inhibition of telomerase activity abolishes the observed growth acceleration and also the related molecular changes. Furthermore, expression of hTERT in telomerase-negative human lens epithelial cells derived from primary cultures also accelerates growth of the transfected cells. Taken together, our results suggest that hTERT, when overexpressed in human lens epithelial cells, accelerates cell growth rate through regulation of RB/E2F pathway and possibly other genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.