Abstract

TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) were recently found to cause familial and sporadic amyotrophic lateral sclerosis (ALS). The mechanisms by which mutations within these genes cause ALS are not understood. We established murine embryonic stem cell (ESC)-based cell models that stably express the human wild-type (WT) and various ALS causing mutations of TDP-43 (A315T) and FUS (R514S, R521C and P525L). We investigated their effect on pan-neuron as well as motor neuron degeneration. Finally, non-cell-autonomous mediated neurodegeneration by muscle cells was investigated. Expression of mutant hTDP-43, but not wild-type TDP-43, as well as wild-type and mutant hFUS proteins induced neuronal degeneration with partial selectivity for motor neurons. Motor neuron loss was accompanied by abnormal neurite morphology and length. In chimeric coculture experiments with control motor neurons and mutant muscle cells (as their major target cells), we detected that mutant hTDP-43 A315T as well as wild-type and hFUS P525L expression only in muscle cells is sufficient to exert degenerative effects on control motor neurons. In conclusion, our data indicate that a selective vulnerability of motor neurons expressing the pathogenic ALS-causing genes TDP-43 and FUS, is, at least in part, mediated through non-cell-autonomous mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.