Abstract

In this study, we developed a human taste receptor protein, hTAS2R38-functionalized carboxylated polypyrrole nanotube (CPNT)-field effect transistor (FET) as a nanobioelectronic tongue (nbe-tongue) that displayed human-like performance with high sensitivity and selectivity. Taster type (PAV) and nontaster type (AVI) hTAS2R38s were expressed in Escherichia coli (E. coli) at a high level and immobilized on a CPNT-FET sensor platform. Among the various tastants examined, PAV-CPNT-FET exclusively responded to target bitterness compounds, phenylthiocarbamide (PTC) and propylthiouracil (PROP), with high sensitivity at concentrations as low as 1 fM. However, no significant changes were observed in the AVI-CPNT-FET in response to the target bitter tastants. This nbe-tongue exhibited different bitter-taste perception of compounds containing thiourea (N-C═S) moieties such as PTC, PROP, and antithyroid toxin in vegetables, which corresponded to the haplotype of hTAS2R38 immobilized on CPNTs. This correlation with the type of receptor is very similar to the human taste system. Thus, the artificial taste sensor developed in this study allowed for the efficient detection of target tastants in mixture and real food sample with a human-like performance and high sensitivity. Furthermore, our nbe-tongue could be utilized as a substitute for cell-based assays and to better understand the mechanisms of human taste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.