Abstract
Radioiodine remains the only tumoricidal therapy for disseminated thyroid carcinomas; however, dedifferentiated tumors lose the expression of human sodium-iodide symporter (hNIS) gene, and cannot respond to this treatment. Previous studies suggested that a trans-active protein factor (NIS-repressor) represses endogenous hNIS transcription, likely contributing to the loss of radioiodine uptake, and defined the NIS-repressor binding site (NRBS) in the proximal hNIS promoter. Using electrophoretic mobility shift assay (EMSA), we found evidence of NIS-repressor in the nuclear extract from KAK-1 cells, and confirmed this result using nuclear extracts prepared from multiple verified thyroid cell lines. Luciferase reporter assays of hNIS promoter constructs and EMSA were used to define two core sequences, NRBS-P and NRBS-D, in the hNIS promoter as the binding sites for NIS-repressor. Electrophoretic analysis of KAK-1 nuclear extract proteins cross-linked with NRBS-P suggests that NIS-repressor is a protein complex. Analysis of KAK-1 nuclear extract proteins bound to NRBS-P, via liquid chromatography coupled with tandem mass spectroscopy, demonstrated poly(ADP-ribose) polymerase-1 (PARP-1) as a NIS-repressor component. Pharmacological inhibition of PARP-1 enzymatic activity using PJ34 stimulated both the luciferase reporter activity driven by hNIS promoter and the endogenous hNIS mRNA level. Supershift studies suggest that thyroid transcription factor 2 (TTF-2) is also associated with the NIS-repressor complex. NIS-repressor, including its PARP-1 component, presents a potential therapeutic target to restore radioiodine uptake in dedifferentiated thyroid carcinomas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.