Abstract

Physicochemical characterization and in vitro human skin diffusion studies of branched-chain ester and carbonate prodrugs of naltrexone (NTX) were compared and contrasted with straight-chain ester and carbonate NTX prodrugs. Human skin permeation rates, thermal parameters, solubilities in mineral oil and buffer, and stabilities in buffer and plasma were determined. Partition coefficients between stratum corneum and vehicle were determined for straight- and branched-chain esters with the same number of carbon atoms. Branched prodrugs had lower melting points, lower buffer solubilities, and higher mineral oil solubilities than NTX. The transdermal flux values from all of these branched prodrugs were significantly lower than flux values from the straight-chain ester and the methyl carbonate prodrugs. Straight-chain prodrugs had higher partition coefficient values and higher calculated thermodynamic activities than their branched-chain counterparts. The prodrug hydrolysis to NTX in buffer and plasma was slower for prodrugs with increased branching. Branched-chain prodrugs with bulky moieties had smaller stratum corneum-vehicle partition coefficients and lower thermodynamic activities that resulted in smaller transdermal flux values than straight-chain prodrugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.