Abstract

In humans, the thymus is the primary lymphoid organ able to support the development of T cells through its three-dimensional (3D) organization of the thymic stromal cells. Since a remarkable number of similarities are shared between the thymic epithelial cells (TECs) and skin-derived keratinocytes and fibroblasts, in this study we used human keratinocytes seeded with fibroblasts on the 3D poly ε-caprolactone scaffold to evaluate their ability to replace TECs in supporting T-cell differentiation from human haematopoietic stem cells (HSCs). We observed that in the multicellular biocomposite, early thymocytes expressing CD7(+)CD1a(+), peculiar markers of an initial T-cell commitment, were de novo generated. Molecular studies of genes selectively expressed during T-cell development revealed that TAL1 was down-regulated and Spi-B was up-regulated in the cell suspension, consistently with a T-cell lineage commitment. Moreover, PTCRA and RAG2 expression was detected, indicative of a recombinant activity, required for the generation of a T-cell receptor repertoire. Our results indicate that in the multicellular biocomposite, containing skin-derived elements in the absence of thymic stroma, HSCs do start differentiating toward a T-cell lineage commitment. In conclusion, the construct described in this study exerts some properties of a lymphoid organoid, suitable for future clinical applications in cell-based therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.