Abstract

Sialidases are widely distributed glycohydrolytic enzymes removing sialic acid residues from glycoconjugates. In mammals, several sialidases with different subcellular localizations and biochemical features have been described. NEU4, the most recently identified member of the human sialidase family, is found in two forms, NEU4 long and NEU4 short, differing in the presence of a 12-amino-acid sequence at the N-terminus. Contradictory data are present in the literature about the subcellular distribution of these enzymes, their membrane anchoring mechanism being still unclear. In this work, we investigate the human NEU4 long and NEU4 short membrane anchoring mechanism and their subcellular localization. Protein extraction with Triton X-114 and sodium carbonate and cross-linking experiments demonstrate that both forms of NEU4 are extrinsic membrane proteins, anchored via protein-protein interactions. Moreover, through confocal microscopy and subcellular fractionation, we show that the long form localizes in mitochondria, while the short form is also associated with the endoplasmic reticulum. Finally, mitochondria subfractionation experiments suggest that NEU4 long is bound to the outer mitochondrial membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.