Abstract

Staphylococcus aureus is a common source of hospital-acquired bacterial infections, where the emergence of antibiotic resistance is a serious human health concern. Most investigations into S. aureus virulence and antibiotic resistance have relied on in vitro cultivation conditions and optimized media formulations. However, S. aureus can survive and adapt to a hostile host environment or antibiotic treatments by rapidly adjusting its metabolic activity. To assess this metabolic response, S. aureus strains susceptible and nonsusceptible to daptomycin were cultivated in medium supplemented with 55% serum to more closely approximate in vivo conditions. Growth analyses, MIC testing, and NMR-based metabolomics determined that serum decreased daptomycin susceptibility and altered metabolism in S. aureus. Both S. aureus strains exhibited altered amino acid biosynthesis and catabolism, enhanced fermentation, and a modified salt tolerance response. The observation that growth conditions defined an adaptive metabolic response to antibiotics by S. aureus may be a critical consideration for designing an effective drug discovery study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.