Abstract

Human serum albumin (HSA) is a depot and carrier for many endogenous and exogenous molecules in blood. Many studies have demonstrated that the transport of HSA in tumor microenvironments contributes to tumor development and progression. In this report, we set up a multimodal nonlinear optical microscope system, combining two-photon excitation fluorescence, second harmonic generation, and two-photon fluorescence lifetime imaging microscopy. The fluorescence lifetime of a small squaraine dye (SD) is used to evaluate HSA concentrations in tumor tissue based on specific binding between SD and HSA. We used SD to stain the cryosections from serous ovarian cancer patients in high-grade (HGSOC) and low-grade (LGSOC), respectively, and found a gradient descent of HSA concentration from normal connective tissue to extracellular matrix to tumor masses from 13 to 2 µM for LGSOC patients and from 36 to 12 µM for HGSOC patients. We demonstrated that multimodal nonlinear optical microscopy can obtain similar results as those from traditional histologic staining, thus it is expected to move to clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call